Abstract
Historically, the basic tools for planning and acting in epidemics and pandemics come from information systems, the need for information in real time, with population scope and described by analysis variables, in the pandemic due to covid from the beginning, through dashboard For permanent surveillance,
analysis and decision-making, together with epidemiological predictive models, are key tools to guide decision-making. The objective of this article is to describe Tunja39;s experience in the design of the dashboard quot; Te cuido me cuido Tunja quot; as a means of disseminating the cases officially presented in the
city of Tunja under key epidemiological parameters in covid19, with this analysis It is possible to identify the importance of the use of predictive models and information systems in real time
for the planning and preparation of concrete actions in advance, and the impact of their articulation with strategies for the time
identification of the virus and epidemiological fences with generalized tests and complete contact tracing, improving coordination between levels of care and epidemiological surveillance
settings.
References
Alcaldia Mayor de Tunja, Secretaria de Proteccion So- ´
cial. (20 de 08 de 2020). Me cuido, te cuido Tunja. Obtenido de Boletin Covid19: https://datastudio.google.com
reporting/d4cf3174-7051-429a-a8ed-714777abfb2c/page/1M
Atewell, A. (2009). Florence Nightingale(1820-1910). Rev
salud hist sanid on-line 2009, 4(1), 1-17.
Cruz, M., Santos, E., Cervantes, M., Juarez, M. (2020). ´
COVID-19, a worldwide public health emergency. Revista Cl´ınica Espanola, 220(1), Disponible en: https: ˜ //www.ncbi.
nlm.nih.gov/pmc/articles/PMC7102523/.
Hethcote, H. W. (2000). The mathematics of infectious
diseases. SIAM Review, 42(4), 599-653.
Ji, C., Jiang, D. (2014). Threshold behaviour of a stochastic SIR model. Applied Mathematical Modelling, 38(21-
, 5067-5079.
Manrique-Abril, F. G. (20 de 08 de 2020). Boyacovid.
Obtenido de Ministerio de las Tic. Datos abiertos: https://herra
mientas.datos.gov.co/usos/boyacovid19
Manrique-Abril, F., Agudelo-Calderon, C., Gonzalez-Chord ´ a,´
V., Gutierrez-Lesmes, O., T ´ ellez-Pi ´ nerez, C., Herrera-Amaya, ˜
GM. (2020). Modelo SIR de la pandemia de Covid-19 en
Colombia. Rev. salud publica, 22(2), 1-09 https: ´ //revistas.unal
edu.co/index.php/revsaludpublica/article/view/85977.
Manrique-Abril, FG; Tellez-Pi ´ nerez, C; Pacheco-L ˜ opez, ´
M. (2020). Estimation of time-varying reproduction numbers of COVID-19 in American countries with regards to
non-pharmacological interventions. F1000Research,9(868),
-10 Disponible en: https://doi.org/10.12688
/f1000research.25309.1.
Ministerio de Tecnolog´ıas de la Informacion y las Comu- ´
nicaciones. (20 de 08 de 2020). Datos abiertos. Recuperado el 20 de 08 de 2020, de Casos positivos de COVID-19
en Colombia: https://www.datos.gov.co/Salud-y-Proteccin-Social/Casos-positivos-de-COVID-19-en-Colombia/gt2j8ykr/data
Mollalo, A., Vahedi, B., Rivera, K. (2020). GIS-based
spatial modeling of COVID-19 incidence rate in the continental United States. Science of The Total Environment,
(Agosto), 1-8 Disponible en:https://doi.org/10.1016
/j.scitotenv.2020.138884.
Osemwinyen, A., Diakhaby, A. (2015). Mathematical
modelling of the transmission dynamics of ebola virus.
Applied and Computational Mathematics, 4(4), 313-320.
Prem, K., Liu, Y., Russell, T., Kucharski, A., Eggo, R.,
Davies, N. (2020). The effect of control strategies that
reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China. The Lancet public health, 5(5),
e261-e270 Disponible en: https://doi.org/10.1016/S2468-
(20)30073-6.
Ridenhour, B., Kowali, k. J., Shay DKRidenhour, B., Kowalik, J., Shay, D. (2018). El numero reproductivo b ´ asi- ´
co (R 0): consideraciones para su aplicacion en la sa- ´
lud poblica. American Journal of Public Health, 108(S6), ´
S455-S65 Disponible en: https://www.ncbi.nlm.nih.gov
/pmc/articles/PMC6291769/.
Snow, J. (1849). On the mode of communication of cholera. London: John Churchil, Princes Street, Soho.
Sun, Z., Thilakavathy, K., Kumar, S., He, G., Liu, S.
(2020). Potential factors influencing repeated SARS outbreaks in China. International Journal of Environmental Research and Public Health, 17, 1633 Disponible en:
Universidad Johns Hopkins. (20 de 08 de 2020). Coronavirus Resource Center. Recuperado el 20 de 08 de 2020,
de https://coronavirus.jhu.edu/map.html
Wilder-Smith, A., Chiew, C., Lee, V. (2020). Can we
contain the COVID-19 outbreak with the same measures
as for SARS? Lancet Infect Dis, 3099(20), E102-E107
Disponible en:https://doi.org/10.1016/S1473-3099(20)30129-
Yang, X., Yu, Y., Xu, J., Shu, H., Liu, H., Wu, Y. (2020).
Clinical course and outcomes of critically ill patients with
SARS-CoV-2 pneumonia in Wuhan, China: a single-centered,
retrospective, observational study. The Lancet Respiratory Medicine, 8(5), 475-481 Disponible en: https://doi.org
/10.1016/S2213-2600(20)30079-5.
Zhou, C., Su, F., Pei, T., Zhang, A., Du, Y., Luo, B.
(2020). COVID-19: challenges to GIS with big data. Geography and Sustainability, 1(1), 77-87 Disponible en:
https://www.sciencedirect.com/science/article/pii
/S2666683920300092.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2022 Journal Health, History and Sanity